Choosing the right graduate degree for data science
How to make sense of the many choices available
This post goes into choosing the right graduate degree for data science, but if you want to know if you should even go in the first place and other career choices, check out the book by me and Emily Robinson: Build Your Career In Data Science.
I’m often asked the same question from people who are interested in analytics and data science: “what graduate degree would be the most useful to me?" There are lots of choices of degrees, many that claim to prepare you for the field, but different programs teach you drastically different skills. These differences can be meaningful when applying to analytics jobs and entering the industry. Here are my opinions on the different options, having worked with and interviewed many data scientists over the years:
An MS in applied mathematics or statistics degree
These degrees are good for critical thinking, but you’re unlikely to learn that many practical skills. You’ll take a lot of courses like real analysis that train you to think hard, but don’t teach you many practicalities. At the end of the program you’ll be an expert at looking at numbers and trying to understand them, but you are probably not going to know much about how to write robust code, or how to deal with messy data. Fortunately understanding the theoretical background should make learning the practicalities of data science easy, but you’ll have to do it on your own time. Since most of data science is writing code and dealing with messy data, employers will be skeptical that you can transition from academia but will trust that you are smart enough to do it once you arrive.
Recommendation: you can pursue one of these degrees (I did), but make sure you supplement it with practical, project-based work like an internship or a personal data science project on the side.
An MBA with an analytics focus
This will teach you a lot about how businesses work, but very little about how to do analytics. These programs tend to be very heavy in Excel and expect that people are coming in with little technical background. You don’t get deep experience with complex data or programming, and unlike a math/stats degree you won’t even have the theoretical background to understand the techniques. If a program can claim to teach you analytics over two years while barely moving out outside of Excel, they are doing you a disservice.
Recommendation: avoid these programs like the plague.
An MS degree in computer science with a machine learning or AI focus
These are great, as they will teach you a lot of the technical skills and you will learn how to implement them. Depending on your job you may never need to write your own algorithms (and instead use other people’s packages) but learning their inner workings makes it easy to understand how to apply them. The risk of these programs is you won’t get enough business expertise, which makes some analytics jobs harder. For example, the kind of work we do at my consulting firm requires applying data science and using it to make a business decisions. These degrees won’t prepare you at all for the business decision component.
Recommendation: these are good degrees, but best for people who want to be writing machine learning models more than using data science to make high-level business decisions.
An MS in Data Science
Many schools are now offering Masters degrees in data science. These degrees combine computer science, math and statistics, and business courses. The verdict is still out on how useful they are because the programs are so new, but they seem potentially promising. If you are looking at a program like this make sure multiple departments run it together. If the degree falls solely in the math, CS, or business school it probably doesn’t have a good combination of material.
Recommendation: consider them, but make sure you do extra diligence on the program material.
But regardless of what program you choose make sure along the way you get lots of project work and as many internships as possible. More than the degree itself, what matters to employers is that you have real experience working with messy data, applying models, and understanding the business context. No set of coursework can compare to an internship or even a side Kaggle competition to help employers see evidence of your understanding of real data science.
If you want a ton of ways to help grow a career in data science, check out the book Emily Robinson and I wrote: Build a Career in Data Science. We walk you through getting the skills you need the be a data scientist, finding your first job, then rising to senior levels.